Longitudinal analysis of built environment and aerosol contamination associated with isolated COVID-19 positive individuals

[ad_1]

  • National Academies of Sciences, Engineering, and Medicine et al. The Built Environment and Microbial Communities. (National Academies Press (US), 2017).

  • Horve, P. F. et al. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J. Expo. Sci. Environ. Epidemiol. https://doi.org/10.1038/s41370-019-0157-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed on 10 August 2021

  • Lednicky, J. A. et al. Collection of SARS-CoV-2 virus from the air of a clinic within a university student health care center and analyses of the viral genomic sequence. Aerosol. Air Qual. Res. 20, 1167–1171 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamner, L. et al. High SARS-CoV-2 attack rate following exposure at a choir practice—skagit county, washington, March 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 606–610 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Razzini, K. et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 742, 140540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morawska, L. & Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139, 105730 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J., Huang, J. & Xiang, D. Large SARS-CoV-2 outbreak caused by asymptomatic traveler, China. Emerg. Infect. Dis. 26, 2260–2263 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Speake, H. et al. Flight-Associated transmission of severe acute respiratory syndrome coronavirus 2 corroborated by Whole-Genome sequencing. Emerg. Infect. Dis. 26, 2872–2880 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katelaris, A. L. et al. Epidemiologic evidence for airborne transmission of SARS-CoV-2 during church singing, Australia, 2020. Emerg. Infect. Dis. 27, 1677–1680 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nissen, K. et al. Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci. Rep. 10, 19589 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Somsen, G. A., van Rijn, C., Kooij, S., Bem, R. A. & Bonn, D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir. Med. 8, 658–659 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dumont-Leblond, N. et al. Positive no-touch surfaces and undetectable SARS-CoV-2 aerosols in long-term care facilities: An attempt to understand the contributing factors and the importance of timing in air sampling campaigns. Am. J. Infect. Control https://doi.org/10.1016/j.ajic.2021.02.004 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, G., Rodrigues, L., Gameiro da Silva, M. & Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses 141, 109781 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ye, G. et al. Environmental contamination of SARS-CoV-2 in healthcare premises. J. Infect. https://doi.org/10.1016/j.jinf.2020.04.034 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, B.-H. et al. Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea. Am. J. Infect. Control 48, 875–879 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahn, J. Y. et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J. Hosp. Infect. 106, 570–576 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin, T. et al. SARS-CoV-2 presented in the air of an intensive care unit (ICU). Sustain. Cities Soc. 65, 102446 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Cheng, V.C.-C. et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect. Control Hosp. Epidemiol. 41, 1258–1265 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Fernández-de-Mera, I. G. et al. Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in spain. Transbound. Emerg. Dis. 68, 1487–1492 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li, Y. H., Fan, Y. Z., Jiang, L. & Wang, H. B. Aerosol and environmental surface monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol. Infect. 148, e154 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Escudero, D. et al. SARS-CoV-2 analysis on environmental surfaces collected in an intensive care unit: Keeping ernest shackleton’s spirit. Intensive Care Med. Exp. 8, 68 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ong, S. W. X. et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA https://doi.org/10.1001/jama.2020.3227 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coil, D. A. et al. SARS-CoV-2 detection and genomic sequencing from hospital surface samples collected at UC davis. PLoS One 16, e0253578 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borges, J. T., Nakada, L. Y. K., Maniero, M. G. & Guimarães, J. R. SARS-CoV-2: A systematic review of indoor air sampling for virus detection. Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-021-13001-w (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lednicky, J. A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100, 476–482 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Horve, P. F. et al. Identification of SARS-CoV-2 RNA in healthcare heating, ventilation, and air conditioning units. Indoor Air 31, 1826–1832 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hermesch, A. C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination and childbirth. Obstet. Gynecol. 136, 827–829 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2004973 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joukar, F. et al. Persistence of SARS-CoV-2 RNA in the nasopharyngeal, blood, urine, and stool samples of patients with COVID-19: A hospital-based longitudinal study. Virol. J. 18, 134 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aranha, C., Patel, V., Bhor, V. & Gogoi, D. Cycle threshold values in RT-PCR to determine dynamics of SARS-CoV-2 viral load: An approach to reduce the isolation period for COVID-19 patients. J. Med. Virol. 93, 6794–6797 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, Y., Zeng, Y. & Chen, C. Presence of SARS-CoV-2 RNA in isolation ward environment 28 days after exposure. Int. J. Infect. Dis. 97, 258–259 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lavezzo, E. et al. Suppression of a SARS-CoV-2 outbreak in the italian municipality of vo’. Nature 584, 425–429 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Finelli, C. & Parisi, S. The clinical impact of COVID-19 epidemic in the hematologic setting. Adv. Biol. Regul. 77, 100742 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arons, M. M. et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 382, 2081–2090 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, R. et al. Viral dynamics in asymptomatic patients with COVID-19. Int. J. Infect. Dis. 96, 288–290 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, W. E. et al. Presymptomatic transmission of SARS-CoV-2—singapore, january 23-march 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 411–415 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernal, J. L. et al. Transmission dynamics of COVID-19 in household and community settings in the united kingdom. bioRxiv https://doi.org/10.1101/2020.08.19.20177188 (2020).

    Article 

    Google Scholar
     

  • Decker, A. et al. Prolonged SARS-CoV-2 shedding and mild course of COVID-19 in a patient after recent heart transplantation. Am. J. Transplant 20, 3239–3245 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Folgueira, M. D., Luczkowiak, J., Lasala, F., Pérez-Rivilla, A. & Delgado, R. Persistent SARS-CoV-2 replication in severe COVID-19. bioRxiv https://doi.org/10.1101/2020.06.10.20127837 (2020).

    Article 

    Google Scholar
     

  • van Kampen, J. J. A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 12, 267 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Santarpia, J. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 10, 12732 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riediker, M. & Tsai, D.-H. Estimation of viral aerosol emissions from simulated individuals with asymptomatic to moderate coronavirus disease 2019. JAMA Netw. Open 3, e2013807–e2013807 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y., Xu, G. & Huang, Y.-W. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS One 15, e0241539 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peccia, J. et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 38, 1164–1167 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parasa, S. et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: A systematic review and meta-analysis. JAMA Netw. Open 3, e2011335–e2011335 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schulze, J. et al. Analysis of severe acute respiratory syndrome 2 replication in explant cultures of the human upper respiratory RTract reveals broad tissue tropism of wild-type and B.1.1.7 variant viruses. J. Infect. Dis. 224, 2020–2024 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • AlJishi, J. M. & Al-Tawfiq, J. A. Intermittent viral shedding in respiratory samples of patients with SARS-CoV-2: Observational analysis with infection control implications. J. Hosp. Infect. 107, 98–100 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, N., Wang, X. & Lv, T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J. Med. Virol. 92, 2286–2287 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, W.-D. et al. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J. Infect. 81, 318–356 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, M. S. Y. et al. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in georgia, USA. Proc. Natl. Acad. Sci. U. S. A. 117, 22430–22435 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parhizkar, H., Van Den Wymelenberg, K. G., Haas, C. N. & Corsi, R. L. A quantitative risk estimation platform for indoor aerosol transmission of COVID-19. Risk Anal. https://doi.org/10.1111/risa.13844 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majra, D., Benson, J., Pitts, J. & Stebbing, J. SARS-CoV-2 (COVID-19) superspreader events. J. Infect. 82, 36–40 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jianyun, L. et al. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. J. 26, 2789–2791 (2020).


    Google Scholar
     

  • Thanh, H. N. et al. Outbreak investigation for COVID-19 in Northern Vietnam. Lancet Infect. Dis. 20, 535–536 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Escandón, K. et al. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect. Dis. 21, 710 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • The American Society of Heating, Refrigerating and Air Condition Engineers, Inc. (ASHRAE). Ventilation of health care facilities (ANSI/ASHRAE/ASHE standard 170-2017). https://www.academia.edu/40918042/ASHRAE_Standard_170-2017 (2017). Accessed on 10 August 2021

  • Allen, J. G. & Ibrahim, A. M. Indoor air changes and potential implications for SARS-CoV-2 transmission. JAMA 325, 2112–2113 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chia, P. Y. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11, 2800 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dietz, L. et al. 2019 novel coronavirus (COVID-19) pandemic: Built environment considerations to reduce transmission. mSystems 5, e00245-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klompas, M., Baker, M. A. & Rhee, C. Airborne transmission of SARS-CoV-2: Theoretical considerations and available evidence. JAMA 324, 441–442 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Howard-Reed, C., Wallace, L. A. & Ott, W. R. The effect of opening windows on air change rates in two homes. J. Air Waste Manag. Assoc. 52, 147–159 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qian, H. et al. Natural ventilation for reducing airborne infection in hospitals. Build. Environ. 45, 559–565 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Escombe, A. R. et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 4, e68 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morawska, L. et al. How can airborne transmission of COVID-19 indoors be minimised?. Environ. Int. 142, 105832 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nembhard, M. D., Burton, D. J. & Cohen, J. M. Ventilation use in nonmedical settings during COVID-19: Cleaning protocol, maintenance, and recommendations. Toxicol. Ind. Health 36, 644–653 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mathai, V., Das, A., Bailey, J. A. & Breuer, K. Airflows inside passenger cars and implications for airborne disease transmission. Sci. Adv. 7, eabe0166 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhagat, R. K., Davies Wykes, M. S., Dalziel, S. B. & Linden, P. F. Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 903, F1 (2020).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar
     

  • Jarvis, M. C. Aerosol transmission of SARS-CoV-2: Physical principles and implications. Front. Public Health 8, 590041 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, C. et al. Impact of age on duration of viral RNA shedding in patients with COVID-19. Aging 12, 22399–22404 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniali, H. & Flaten, M. A. What psychological factors make individuals believe they are infected by coronavirus 2019?. Front. Psychol. 12, 667722 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • den Bergh, M. F. Q. K. et al. Prevalence and clinical presentation of health care workers with symptoms of coronavirus disease 2019 in 2 Dutch hospitals during an early phase of the pandemic. JAMA Netw. Open 3, e209673–e209673 (2020).

    Article 

    Google Scholar
     

  • Nomura, S. et al. An assessment of self-reported COVID-19 related symptoms of 227,898 users of a social networking service in japan: Has the regional risk changed after the declaration of the state of emergency?. Lancet Reg. Health Western Pac. 1, 100011 (2020).

    Article 

    Google Scholar
     

  • Merckelbach, H., Dandachi-FitzGerald, B., van Helvoort, D., Jelicic, M. & Otgaar, H. When patients overreport symptoms: More than just malingering. Curr. Dir. Psychol. Sci. 28, 321–326 (2019).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Prevalence and persistent shedding of fecal SARS-CoV-2 RNA in patients with COVID-19 infection: A systematic review and meta-analysis. Clin. Transl. Gastroenterol. 12, e00343 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rawlings, S. A. et al. No evidence of SARS-CoV-2 seminal shedding despite SARS-CoV-2 persistence in the upper respiratory tract. Open Forum Infect. Dis. 7, ofaa325 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, J.-R. et al. Persistent viral RNA positivity during the recovery period of a patient with SARS-CoV-2 infection. J. Med. Virol. 92, 1681–1683 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang, H., Wang, Y., Tong, Z. & Liu, X. Retest positive for SARS-CoV-2 RNA of ‘recovered’ patients with COVID-19: Persistence, sampling issues, or re-infection?. J. Med. Virol. 92, 2263–2265 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • University of Oregon. Monitoring and assessment program (MAP). https://coronavirus.uoregon.edu/map. Accessed on 10 August 2021

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. Biometrics 38, 963–974 (1982).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Raudenbush, S. W. & Bryk, A. S. Hierarchical Linear Models: Applications and Data Analysis Methods. (SAGE, 2002).

  • David, R., Alex, H. & Simon, C. broom: Convert Statistical Objects into Tidy Tibbles. R package version 0.7.8. (2021). https://CRAN.R-project.org/package=broom. Accessed on 10 August 2021

  • Hadley, W., Romain, F., Lionel, H. & Kirill, M. dplyr: A grammar of data manipulation. R package version 1.0.7. (2021). https://CRAN.R-project.org/package=dplyr. Accessed on 10 August 2021

  • David, G. flextable: Functions for Tabular Reporting. R package version 0.6.6. (2021). https://CRAN.R-project.org/package=flextable. Accessed on 10 August 2021

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar
     

  • Alboukadel, K. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. (2020). https://CRAN.R-project.org/package=ggpubr. Accessed on 10 August 2021

  • Ahlmann-Eltze, C. & Patil, I. ggsignif: R Package for displaying significance brackets for “ggplot2”. PsyArxiv https://doi.org/10.31234/osf.io/7awm6 (2021).

    Article 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article 

    Google Scholar
     

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar
     

  • Garrett, G. & Hadley, W. Dates and times made easy with lubridate. J. Stat. Softw. 40(3), 1–25 (2011).


    Google Scholar
     

  • Hadley, W. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40(1), 1–29 (2011).


    Google Scholar
     

  • Hadley, W. & Dana, S. scales: Scale Functions for Visualization. R package version 1.1.1. (2020). https://CRAN.R-project.org/package=scales. Accessed on 10 August 2021

  • Wickham, et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Simon, G., Noam, R., Robert, R., Antônio, P. C., Marco, S., & Cédric, S. Rvision—Colorblind-Friendly Color Maps for R. R package version 0.6.1. (2021).

  • Karthik, R. & Hadley, W. wesanderson: A Wes Anderson Palette Generator. R package version 0.3.6. (2018). https://CRAN.R-project.org/package=wesanderson.

  • [ad_2]

    Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *